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Comparative study of large-scale Laplacian growth patterns
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We investigate the scaling of cluster size with mass for our simulations of diffusion-limited ag-
gregation (DLA) clusters and dielectric-breakdown (DB) clusters of 10 particles grown on a square
lattice, and DLA clusters of 10° particles grown off lattice. We find that the mass distribution and
scaling behavior for the on-lattice DB model are intermediate between those for the on-lattice DLA
model and the off-lattice DLA model. We take this as evidence that signatures of lattice anisotropy
and the microscopic kinetics of attachment are both manifest at large length scales.

PACS number(s): 68.70.4+w, 05.40.+j

The diffusion-limited aggregation (DLA) model [1] and
the dielectric-breakdown (DB) model [2] are among the
most widely studied models for generating fractal growth
patterns (for recent reviews, see, e.g., [3,4]). Each of these
models is a Laplacian growth process in which diffusing
particles released from a distant boundary attach to the
perimeter of a growing cluster. The essential difference
between the models is a boundary condition [5].

In on-lattice versions the diffusing particle undergoes a
random walk on a lattice and particles in the cluster are
represented by occupied (aggregate) sites on the lattice.
In the DLA model the diffusing particles are terminated
at the first surface site (unoccupied site adjacent to an ag-
gregate site) that they contact. This surface site is then
converted to an aggregate site. In the DB model the dif-
fusing particles can diffuse through surface sites but are
terminated at the first aggregate site they contact. The
surface site immediately preceding this termination site
in the diffusion process is then converted to an aggregate
site. The DB boundary condition introduces an inher-
ent surface tension [6,7]. In this sense, the DB model is
more physically appealing than the DLA model, which
has zero surface tension [8].

An “off-lattice” Laplacian growth model has also been
introduced [9]. In this model, the diffusing particle slides
over fixed step lengths in free space until it first inter-
sects the cluster. The diffusing particle is then moved
back and is attached at its first point of contact with
the cluster. We will follow convention and refer to this
growth process as “off-lattice DLA.” However, this off-
lattice growth process more closely realizes the boundary
conditions for the DB model, since the diffusing particle
can diffuse along the “surface” of the cluster in each of
these models.

Much of the theoretical interest in the above models
has been directed at determining precise numerical and
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algebraic estimates for the fractal dimension D [3,4]. Off-
lattice DLA clusters are homogeneous self-similar frac-
tals, with fractal dimension D ~ 1.7 in d = 2, in-
dependent of cluster size (see, e.g., [10,11]). In con-
trast, the morphology of on-lattice DLA is size dependent
[12-14]. Small clusters appear to be self-similar fractals
with D ~ 1.7 [1,8]. Large clusters have an anisotropic
star-shaped envelope with the star tips directed along
the lattice axes and estimates for D vary in the range
1.5 < D < 1.7 depending on the size of the cluster [14].
Thus signatures of lattice anisotropy are clearly manifest
in large-scale simulations. Small DB clusters also appear
to be self-similar fractals with D ~ 1.7 [2,5]. However,
we are unaware of any studies of large (> 10* particles)
DB clusters and the on-lattice DLA studies suggest that
large clusters are necessary to reveal the full behavior of
the model [14].

It is generally believed that the differences between
large-scale on-lattice and off-lattice DL A patterns are due
to the underlying lattice anisotropy. However, as noted
above, the kinetics of attachment implied by the bound-
ary conditions are also different in these two models. The
role played by this difference has not been fully explored.
Large-scale studies of on-lattice DB patterns are also use-
ful for this purpose because the kinetics of attachment
are similar to off-lattice DLA, but the diffusion process
is confined to the underlying lattice. The possibility of
signatures of the microscopic boundary conditions being
manifest at large length scales has also been suggested
by the profound difference observed between on-lattice
DLA and DB clusters in the zero-noise limit [7].

We have written and implemented computer codes for
the growth of large on-lattice DLA and DB clusters and
off-lattice DLA clusters. We use the results from these
codes to provide estimates for the fractal dimension of
DB clusters of up to 10° particles and we provide inde-
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FIG. 1. Representative clusters of size 108 for (a) on-lattice DB,
(c) on-lattice DLA, and (e) off-lattice DLA. Parts 2b), (d), and (f)
show the corresponding overlays of the last 105 particles added for
each of 10 clusters. Note the change of scale for the on-lattice DLA
clusters. In each case the spacing between tickmarks is 1000 units.

pendent estimates for the fractal dimension of large on-
lattice and off-lattice DLA clusters. Our aim here is not
to break existing records for cluster sizes (DLA clusters
with more than 107 particles have been grown previously,
see e.g., [11,15,16]) but to make a comparative study of
the large-scale structure of the three Laplacian growth
models.

To obtain large DLA clusters it is necessary to move
the diffusing particle over a distance greater than a lat-
tice spacing (on lattice) or greater than a particle diam-
eter (off lattice) in a given step of the algorithm. This
is done by moving the diffusing particle in one step from
its current location to a point on the perimeter of an
empty region centered on this current location. To effi-
ciently implement these steps it is necessary to be able
to (i) readily identify large empty regions and (ii) readily
calculate Laplacian probabilities around the perimeter of
the empty region.

In our on-lattice codes we systematically search for the
largest empty square and employ a look-up table based
on probability formulas derived by McCrea and Whipple
[17] to move the particle to the perimeter of the square
in one step. Single steps across more than one lattice
spacing can also be implemented approximately using the
continuum Green’s function [13,14] or without approxi-
mation using the discrete lattice Green’s function [18].

In our off-lattice simulations we store the aggre-
gate particle locations on nested sublattices and sweep

through these in sequence from the coarsest grid size to
the finest grid size to identify the largest empty circle
[13,10,11]. In off-lattice simulations the probability of
moving to any given point on the perimeter is uniform
around the circle. An additional complication can arise in
off-lattice simulations from particle overlaps at the end of
a step or during a step. In our off-lattice simulations we
implement sliding steps to strictly avoid overlaps. Details
of our simulations have been reported elsewhere [19].
We have used the above algorithms to generate 10 clus-
ters of size 10° particles for each of the three models; on-
lattice DB, on-lattice DLA, and off-lattice DLA. With
clusters of this size we can already detect a noticeable
anisotropy in a single pattern from the on-lattice simula-
tions [Fig. 1(a) and 1(c)]. An overlay of 10 such patterns
for each model [Fig. 1(b), 1(d), and 1(f)] reveals the
following clear trends. Both the on-lattice DB and off-
lattice DLA models produce patterns that are more com-
pact than the on-lattice DLA model. The off-lattice DLA
patterns are essentially isotropic with a circular envelope,
whereas the on-lattice DLA patterns have a distinctive
cross-shaped envelope [14]. The on-lattice DB patterns
are also anisotropic, however the overall envelope appears
to be intermediate between a cross and a diamond.
These results indicate that both the effects of lattice
anisotropy and boundary conditions are manifest at large
scales. The more compact nature of the on-lattice DB
and off-lattice DLA patterns reflects the inherent surface
tension arising from the similar boundary conditions in
these models (recall that on-lattice DLA has no surface
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FIG. 2. Angular distribution of mass (6 + 22.5°) in Lapla-

cian growth patterns for sizes 10%, 10%, and 108 particles for (a)
on-lattice DB, (b) on-lattice DLA, and (c) off-lattice DLA.
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FIG. 3. Angular distribution of mass (6 & 1°) in Laplacian

growth patterns for sizes 10%, 10%, and 10® particles for (a)
on-lattice DB, (b) on-lattice DLA, and (c) off-lattice DLA.

tension). The envelope of patterns for the on-lattice mod-
els reflects the underlying lattice anisotropy. The overall
on-lattice DB patterns reflect a balance between the com-
peting effects of lattice anisotropy and surface tension.
In the noise-reduced version of this model this competi-
tion leads to tip splitting [20,7] and the possibility of a
different fractal dimension than that of noise-reduced on-
lattice DLA, which does not exhibit tip splitting [20,7].
A useful diagnostic for probing the morphology of
Laplacian growth patterns is the angular mass distribu-
tion function. For on-lattice DLA a polar plot of this
function clearly reveals the transition from a diamond-
shaped envelope characteristic of clusters containing
about 10* particles to a cross-shaped envelope for about
108 particles [14]. In Fig. 2 and Fig. 3 we show nor-
malized polar plots of the mass distribution function for
clusters containing 10%, 10%, and 10° particles for each of
the three models. Figure 2 is a coarse-grained angular

distribution function showing, for each angle 6, the num-
ber of aggregate particles within a wedge of 6 + 22.5°.
In Fig. 3, results are shown for a narrower wedge of
0 + 1°. We have averaged over all 10 clusters in these
figures. The coarse-grained angular distributions have
an approximate circular shape for the off-lattice DLA
clusters over the range of sizes displayed whereas the ap-
proximate shape is diamondlike for on-lattice clusters of
10* particles and crosslike for on-lattice clusters of > 10°
particles (see also [14] for on-lattice DLA). The ratio of
the arm length divided by the arm width is greater in
the large-scale on-lattice DLA distributions than it is in
the large-scale on-lattice DB distributions. Moreover, the
length to width ratio is increasing with cluster size more
quickly in the on-lattice DLA distributions. This is es-
pecially evident in Fig. 3.

The fractal dimension D of a self-similar cluster can
be determined from the scaling relation,

M ~ RY/P, (1)

where M is the number of particles (or mass) of the clus-
ter and R, is the radius of gyration (see, e.g., [3,4]). For
the on-lattice DLA model the fractal dimension is known
to depend on the size of the cluster. Thus DLA is only
approximately fractal in the sense that the scaling rela-
tion (1) is not strictly obeyed. It is, therefore, important
to estimate D over a range of scales. We adapt a method
developed by Tolman and Meakin [10] to achieve this aim.
Data is derived from cluster j by determining log,, M;
and log,, R (where R is the radius of gyration) at points
M; = Int(10%-°%G~1)) where i = [21,101]. To determine
an estimate over a given range of 7 a linear least squares
fit of the data log,y R} vs log,q M; fori =p,p+1,...,q
is performed. The gradient of this line D:;’q is then aver-
aged over all the clusters to determine D, ;. The measure
D, , is the exponent of the power law given by (1) over
the range [p, ¢]. If it remains constant over several orders
of magnitude it can be termed the fractal dimension.

In Fig. 4 we plot D;_1; and D;_4 ;44 vs logg M for
each of the different models (the latter measurement cor-
responds to that developed in Ref. [10]). For M < 10*
there are large fluctuations in the value of D due to the
relatively small range of M used in the estimations. In
the on-lattice simulations the fluctuations are about an
approximate median value of D = 1.72 whereas in the off-
lattice simulation the value of D decreases almost mono-
tonically to 1.72 at M = 10%. As M increases in the
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FIG. 4. The scaling exponent D plotted as a function of log;y M for the three different types of Laplacian grpwt:,h patterns; (a) on-lattice
DB, (b) on-lattice DLA, and (c) off-lattice DLA. The symbols indicate the local exponent D; ;41 and the solid lines indicate D;_4, 14, a
statistically more robust measure.
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TABLE I. The values of the fractal exponents for the different classes of clusters. The calculation of D, , is discussed in the

text. The error bars represent 95% confidence limits.

Model D361 De1 81 Ds1,101 Dio1,121 Dy 121 Dii13,121

DB 1.793+0.073 1.708+0.024 1.71140.040 1.678+0.021 1.708+0.013 1.681+0.028
DLA 1.778+0.060 1.723+0.044 1.697+0.019 1.669+0.018 1.70440.022 1.649+0.030
Off lattice 1.8514+0.092 1.708+0.041 1.72440.026 1.7224+0.016 1.7314+0.018 1.7244-0.016

range 10 < M < 10° there is a gradual decrease in the
value of D in the on-lattice simulations but D remains es-
sentially constant in the off-lattice simulations. We note
too that the rate of decrease is larger for on-lattice DLA
than for on-lattice DB.

In Table I, we list D;; for a range of 7,5 and error
bounds calculated from the standard error among the 10
clusters of each type. Our results for off-lattice clusters
are in broad agreement with those reported previously
[11]. The off-lattice clusters from our simulations appear
to be well-defined self-similar objects. The dimension of
D = 1.724 £ 0.016 is slightly higher than that reported
elsewhere (D = 1.712 £ 0.003; [11]), but there is agree-
ment within the experimental error bars. Our results for
on-lattice DLA clusters are also consistent with earlier
results [14]. Our final estimate of D = 1.649 %+ 0.030 for
the on-lattice DLA model is slightly higher than the value
D ~ 1.64 suggested by Meakin et al. [14]. Finally we note
that for large DB clusters (M > 5 x 10°) the dimension
is intermediate between that of off-lattice DLA and on-
lattice DLA. Moreover from Fig. 4, it appears that at
M = 10° the fractal dimension of DB (D = 1.681 +0.28)
is at or is very close to its asymptotic value.

The main purpose of this paper was to initiate stud-
ies of the large-scale structure of the DB model. We
compared the growth patterns on the square lattice with

on- and off-lattice DLA patterns. Our essential findings
were that the angular mass distribution and the scal-
ing of cluster size (radius of gyration) with mass (num-
ber of particles) for the DB clusters was intermediate
between that for the on-lattice DLA model and the off-
lattice DLA model. The on-lattice DLA model is subject
to lattice anisotropy but no surface tension whereas the
off-lattice DLA model has no lattice anisotropy but the
microscopic kinetics of attachment define an inherent sur-
face tension. The on-lattice DB model is subject to both
lattice anisotropy and an inherent surface tension.

The differences and similarities between the results for
the different models suggests that the signatures of lattice
anisotropy and the microscopic kinetics of attachment are
both manifest at large length scales. It would be most
interesting to determine if one effect dominates over the
other in the asymptotic limit. The analysis of large-scale
clusters presented here together with our zero-noise stud-
ies [7] would suggest that this is not the case but much
larger clusters (about two orders of magnitude) would be
required to unambiguously settle this point.
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